Information sharing-based multivariate proper orthogonal decomposition

Author:

Wang ZihaoORCID,Zhang GuiyongORCID,Sun TeizhiORCID,Huang Huakun

Abstract

This study explores challenges in multivariate modal decomposition for various flow scenarios, emphasizing the problem of inconsistent physical modes in Proper Orthogonal Decomposition (POD). This inconsistency arises due to POD's inability to capture inter-variable relationships and common flow patterns, resulting in a loss of phase information. To address this issue, the study introduces two novel data-driven modal analysis methods, collectively called Information Sharing-Based Multivariate POD (IMPOD). These methods, namely, Shared Space Information Multivariate POD (SIMPOD) and Shared Time Information Multivariate POD (TIMPOD), aim to regularize modal decomposition by promoting information sharing among variables. TIMPOD, which assumes shared time information, successfully aligns multivariate modes and corrects their phases without significantly affecting reconstruction error, making it a promising corrective technique for multivariate modal decomposition. In contrast, SIMPOD, which assumes shared space information, reorders modes and may lead to a loss of meaningful insight and reconstruction error.

Funder

National Natural Science Foundation of China

Fundamental Research Fund for the Central Universities

Computation support of the Supercomputing Center of Dalian University of Technology

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference37 articles.

1. Challenges for large eddy simulation of engineering flows,2018

2. Turbulence modeling in the age of data;Annu. Rev. Fluid Mech.,2019

3. Machine learning for fluid mechanics;Annu. Rev. Fluid Mech.,2020

4. The structure of inhomogeneous turbulent flows,1967

5. Dynamic mode decomposition of numerical and experimental data;J. Fluid Mech.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3