Molecular dynamics simulation to reveal the transport mechanism of LiPF6 in ethylene carbonate + dimethylcarbonate binary solvent

Author:

Kiyobayashi Tetsu1ORCID,Uchida Satoshi1ORCID,Ozaki Hiroyuki1ORCID,Kiyohara Kenji1ORCID

Affiliation:

1. Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST) , 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan

Abstract

This paper presents the molecular dynamics simulation of 1 mol kg−1 LiPF6 in a binary solvent of ethylene carbonate (EC) and dimethylcarbonate, which is a representative electrolyte solution for lithium-ion batteries. The simulation successfully reproduced the diffusion coefficient, ionic conductivity, and shear viscosity as functions of EC content at 300 K, which had been experimentally determined in our previous study. The Yukawa potential was adopted to model intercharge interactions to reduce computational costs, which consequently allowed us to precisely calculate the conductivity and viscosity by directly integrating time-correlation functions without explicitly modeling the molecular polarization. Breaking down microscopic current correlation functions into components revealed that, whereas the cation–anion attractive interaction dominantly impedes the conduction when the EC content is low, it is the cation–cation and anion–anion repulsive interactions that reduce the conductivity at a high EC content. An analysis of the pressure correlations revealed that all components positively contribute to the viscosity in the binary solvent without the electrolyte. On the other hand, negative terms are observed in five out of six cross correlations in the presence of the electrolyte, implying that these correlations negatively contribute to the shear stress and entropy production, both of which are net positive.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3