Solar energy harvesting using new broadband metamaterial solar absorbers for generation of heat

Author:

Khichar Vivek1ORCID,Hozhabri Nader2ORCID,Koymen Ali R.1ORCID

Affiliation:

1. Department of Physics, University of Texas at Arlington 1 , Arlington, Texas 76019, USA

2. Nanotechnology Research Center, Shimadzu Institute, University of Texas at Arlington 2 , Arlington, Texas 76019, USA

Abstract

We have designed and fabricated TiN/SiO2/TiN–HfO2-based new metamaterial microstructures as an absorber of the visible wavelength, in the range of 400–700 nm, with exceptionally high absorption efficiency (>96%) for solar energy harvesting purposes and generation of heat upon absorption of electromagnetic energy. The finite element method-based COMSOL Multiphysics software simulations were used to optimize the structural parameters of the microstructures and visualize the electric field and electromagnetic power loss distribution in the structure. An optimized 2D unit cell of the structure consists of a 4 μm × 160 nm TiN base on a glass substrate covered with a 70 nm thick SiO2 film. A periodic structure of TiN straps (each 90 nm thick and 2 μm wide) is deposited over the SiO2. The straps are capped with a 40 nm thick layer of high-temperature dielectric HfO2 with a periodicity of 4 µm. This unit is symmetric along the other dimension and is repeated periodically along the horizontal direction. Similar optimized parameters were used for 7, 10, and 100 µm periodic structures to investigate the effect of grating structure pitch on the absorption of light. Although these microstructures were optimized for the visible light spectrum, they show absorption efficiency of >92% when integrated over a broadband wavelength spectrum ranging from 400 to 1200 nm. The experimental data show excellent agreement with the simulated results. We observe less than 5% difference between experimental and simulated absorption efficiencies for the investigated microstructures. Furthermore, we should emphasize that, to the best of our knowledge, this is the first study to experimentally report the light to heat conversion in metamaterials with micron-range size patterned structures.

Publisher

AIP Publishing

Reference47 articles.

1. New metamaterial as a broadband absorber of sunlight with extremely high absorption efficiency;AIP Adv.,2020

2. Broadband and efficient graphene solar absorber using periodical array of C-shaped metasurface;Opt. Quantum Electron.,2020

3. Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array

4. Ultra-broadband wide-angle metallo-dielectric metamaterial absorber for solar energy harvesting,2019

5. A solar energy absorber design using metamaterial particles for renewable energy solutions,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3