Effects of the parameters of inner air cylinder on evolution of annular SF6 cylinder accelerated by a planar shock wave

Author:

Zheng Chun1ORCID,He Yong1,Zhang Huanhao2ORCID,Chen Zhihua2

Affiliation:

1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

2. Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

Based on the compressible Navier–Stokes equations combined with the fifth-order weighted essentially non-oscillatory scheme, this paper discusses the interaction of a planar shock wave with an annular SF6 cylinder. The influence of the position and radius of inner cylinder on the evolution of the annular cylinder is examined in detail. Numerical schlieren results clearly show the evolution of the inner and outer interfaces induced by the Richtmyer–Meshkov instability and reveal the evolution of complex shock wave structures as the incident planar shock interacts with the annular cylinder. Shock transformation from the free precursor refraction pattern to the free precursor von Neumann refraction pattern occurs when the inner cylinder position shifts forward, while the shock transformation from the twin von Neumann refraction pattern to the free precursor refraction pattern and the shock transformation from free precursor refraction pattern to the free precursor von Neumann refraction pattern occur when the radius of the inner cylinder gradually becomes larger. The generation and transportation of vorticity on the interfaces are also analyzed, revealing that changes to the inner cylinder play a significant role. The distribution and evolution of vorticity on the interfaces influence the formation of the primary vortex structure at later stages. Quantitative analysis of the circulation and enstrophy indicates that the smaller the inner radius, the larger the value of circulation and enstrophy at the later stage.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3