Pressure effects on soot formation and evolution in turbulent jet flames

Author:

Zhou Dezhi1ORCID,Zou Shufan1,Boyette Wesley R.2ORCID,Guiberti Thibault F.2ORCID,Roberts William L.2,Yang Suo1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota–Twin Cities, Minneapolis, Minnesota 55455, USA

2. King Abdullah University of Science and Technology (KAUST), CCRC, Thuwal 23955-6900, Saudi Arabia

Abstract

In this study, two series of pressurized turbulent jet sooting flames at 1, 3, and 5 bar with either fixed jet velocity or fixed Reynolds number are simulated to study the pressure effects on soot formation and evolution. Through a radiation flamelet progress variable approach with a conditional soot subfilter probability density function (PDF) model to consider the turbulence–chemistry–soot interactions, quantitatively good agreements are achieved for soot volume fraction (SVF) predictions compared with the experimental data, regardless different turbulent intensities and residence times. SVF source terms are then discussed to show the pressure effects on nucleation, condensation, surface growth, and oxidation at different axial positions in these flames. It is found that surface growth and oxidation increase by about three orders of magnitude from 1 to 5 bar, while nucleation and condensation only increase within one order of magnitude. The stronger SVF scaling on pressure than measured data is found to be attributed to the inaccurate surface growth and oxidation scaling on pressure. Further analysis indicates that (i) the uncertainty of C2H2 prediction at elevated pressures is likely a major reason for the too strong surface growth scaling; and (ii) taking account of pressure effects in the conditional subfilter PDF modeling for turbulence–soot–chemistry interactions is likely a key to improve oxidation prediction. The results in this study open up the possibilities for improving future turbulent sooting flame modeling by improving C2H2 chemistry and turbulence–chemistry–soot modeling at elevated pressures.

Funder

National Science Foundation

College of Science and Engineering, University of Minnesota

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3