Exploring the capabilities and limitations of the Van Hove function to understand directional correlations in ion movements within Li-ion battery electrolytes

Author:

Mitra Sudipta1ORCID,Biswas Ranjit1ORCID

Affiliation:

1. Department of Chemical and Biological Sciences, S.N. Bose National Centre for Basic Sciences , Block-JD, Sector-3, Salt Lake, Kolkata 700106, India

Abstract

Understanding microscopic directional correlations in ion movements within lithium-ion battery (LIB) electrolytes is important because these correlations directly affect the ionic conductivity. Onsager transport coefficients are widely used to understand these correlations. On the other hand, the Van Hove function (VHF) is also capable of determining correlated motions. However, identifying various types of ion correlated motions in LIB electrolytes using VHF is not well explored. Here, we have conducted molecular dynamics simulations of a representative experimental LIB electrolyte system—lithium hexafluorophosphate (LiPF6)—at different concentrations in a (9:1 wt. %) mixture of ethyl methyl carbonate and fluoroethylene carbonate in order to explore the capabilities and limitations of using VHF to understand different types of ion correlations. We conclude that analysis of VHF can qualitatively describe both the positive correlation between cation–anion at different salt concentrations and the negative correlation between cation–cation and anion–anion present in high salt concentration, but it cannot foretell which correlation is dominating at any given electrolyte concentration. This type of quantitative information can be obtained only via Onsager’s approach. This could be seen as a limitation of relying solely on VHF to fully understand ion correlation in electrolyte media.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3