Predicting micro-bubble dynamics with semi-physics-informed deep learning

Author:

Zhai Hanfeng12ORCID,Zhou Quan1ORCID,Hu Guohui1ORCID

Affiliation:

1. Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, People’s Republic of China

2. Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, USA

Abstract

Utilizing physical information to improve the performance of the conventional neural networks is becoming a promising research direction in scientific computing recently. For multiphase flows, it would require significant computational resources for neural network training due to the large gradients near the interface between the two fluids. Based on the idea of the physics-informed neural networks (PINNs), a modified deep learning framework BubbleNet is proposed to overcome this difficulty in the present study. The deep neural network (DNN) with separate sub-nets is adopted to predict physics fields, with the semi-physics-informed part encoding the continuity equation and the pressure Poisson equation [Formula: see text] for supervision and the time discretized normalizer to normalize field data per time step before training. Two bubbly flows, i.e., single bubble flow and multiple bubble flow in a microchannel, are considered to test the algorithm. The conventional computational fluid dynamics software is applied to obtain the training dataset. The traditional DNN and the BubbleNet(s) are utilized to train the neural network and predict the flow fields for the two bubbly flows. Results indicate the BubbleNet frameworks are able to successfully predict the physics fields, and the inclusion of the continuity equation significantly improves the performance of deep NNs. The introduction of the Poisson equation also has slightly positive effects on the prediction results. The results suggest that constructing semi-PINNs by flexibly considering the physical information into neural networks will be helpful in the learning of complex flow problems.

Funder

National Natural Science Foundation of China

Key Research Project of Zhejiang Laboratory

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributed Physics-Informed machine learning strategies for two-phase flows;International Journal of Multiphase Flow;2024-07

2. Physics-informed neural networks for heat transfer prediction in two-phase flows;International Journal of Heat and Mass Transfer;2024-04

3. Uncertainty Quantification of Vibroacoustics with Deep Neural Networks and Catmull–Clark Subdivision Surfaces;Shock and Vibration;2024-02-10

4. Application of the Distributed Physics Informed Neural Networks in approximating solutions to multi-phase flow problems;Proceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference December 14-17, 2023, IIT Patna, Patna-801106, Bihar, India;2024

5. Experimentally trained hybrid machine learning algorithm for predicting turbulent particle-laden flows in pipes;Physics of Fluids;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3