Soft bottles drain faster but glug slower

Author:

Velankar Rohit S.,Velankar Sachin S.12ORCID

Affiliation:

1. Department of Chemical Engineering, University of Pittsburgh 1 , Pittsburgh, Pennsylvania 15261, USA

2. Department of Mechanical Engineering and Material Science, University of Pittsburgh 2 , Pittsburgh, Pennsylvania 15261, USA

Abstract

An inverted container of water drains with a periodic glugging process where bubbles of air enter through the bottom hole, thus replacing the exiting water. If the container is soft, its walls can flex with each glug. We examine the effect of container elasticity on the drainage process. Experiments are conducted to measure the drainage rate and the glug period as water drains out of a container through a bottom hole. The container compliance is varied by varying the diameter of a soft rubber membrane comprising the lid of the container. Increasing container compliance (i.e., making the container softer) is found to increase the drainage velocity, increase the glugging period, and increase the volume of each glug. Previously, Clanet and Searby (2004) modeled the glugging process as a spring-and-mass oscillator where the compressibility of air in the headspace acts as the spring. We adapt this model so that the membrane elasticity acts in series with the air compressibility. This adapted model qualitatively agrees with the observations but underpredicts the observed effect on the glug period.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3