Atomic-scale tailoring of chemisorbed atomic oxygen on epitaxial graphene for graphene-based electronic devices

Author:

Kim Tae Soo12ORCID,Ahn Taemin3ORCID,Kim Tae-Hwan3ORCID,Choi Hee Cheul12ORCID,Yeom Han Woong23ORCID

Affiliation:

1. Department of Chemistry, Pohang University of Science and Technology (POSTECH) 1 , Pohang 37673, South Korea

2. Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS) 2 , Pohang 37673, South Korea

3. Department of Physics, POSTECH 3 , Pohang 37673, South Korea

Abstract

Graphene, with its unique band structure, mechanical stability, and high charge mobility, holds great promise for next-generation electronics. Nevertheless, its zero bandgap challenges the control of current flow through electrical gating, consequently limiting its practical applications. Recent research indicates that atomic oxygen can oxidize epitaxial graphene in a vacuum without causing unwanted damage. In this study, we have investigated the effects of chemisorbed atomic oxygen on the electronic properties of epitaxial graphene using scanning tunneling microscopy (STM). Our findings reveal that oxygen atoms effectively modify the electronic states of graphene, resulting in a bandgap at its Dirac point. Furthermore, we demonstrate that it is possible to selectively induce desorption or hopping of oxygen atoms with atomic precision by applying appropriate bias sweeps with an STM tip. These results suggest the potential for atomic-scale tailoring of graphene oxide, enabling the development of graphene-based atomic-scale electronic devices.

Funder

Institute for Basic Science

National Research Foundation of Korea

Samsung Electronics and Veteran researcher grant

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3