Mechanism of antifreeze protein functioning and the “anchored clathrate water” concept

Author:

Zielkiewicz Jan1ORCID

Affiliation:

1. Faculty of Chemistry, Department of Physical Chemistry, Gdańsk University of Technology , Narutowicza 11/12, 80–233 Gdańsk, Poland

Abstract

In liquid water, there is a natural tendency to form aggregates that consist of water molecules linked by hydrogen bonds. Such spontaneously formed aggregates are surrounded by a “sea” of disordered water molecules, with both forms remaining in equilibrium. The process of creating water aggregates also takes place in the solvation water of proteins, but in this case, the interactions of water molecules with the protein surface shift the equilibrium of the process. In this paper, we analyze the structural properties of the solvation water in antifreeze proteins (AFPs). The results of molecular dynamics analysis with the use of various parameters related to the structure of solvation water on the protein surface are presented. We found that in the vicinity of the active region responsible for the binding of AFPs to ice, the equilibrium is clearly shifted toward the formation of “ice-like aggregates,” and the solvation water has a more ordered ice-like structure. We have demonstrated that a reduction in the tendency to create “ice-like aggregates” results in a significant reduction in the antifreeze activity of the protein. We conclude that shifting the equilibrium in favor of the formation of “ice-like aggregates” in the solvation water in the active region is a prerequisite for the biological functionality of AFPs, at least for AFPs having a well-defined ice binding area. In addition, our results fully confirm the validity of the “anchored clathrate water” concept, formulated by Garnham et al. [Proc. Natl. Acad. Sci. U. S. A. 108, 7363 (2011)].

Funder

Infrastruktura PL-Grid

Academic Computer Centerin Gdańsk

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3