Desorption of physisorbed molecular oxygen from coronene films and graphite surfaces

Author:

Mohamed Ibrahim Abdi Salam1ORCID,Morisset Sabine2ORCID,Baouche Saoud1ORCID,Dulieu Francois1ORCID

Affiliation:

1. CY Cergy Paris Université, Sorbonne Université, Observatoire de Paris, PSL Université, CNRS, LERMA, F-95000 Cergy-Pontoise, France

2. Institut des Sciences Moléculaires d’Orsay, ISMO, CNRS, Université Paris-Sud, Université Paris Saclay, F-91405 Orsay, France

Abstract

We present a study on the adsorption and desorption of molecular oxygen (O2) on highly oriented pyrolytic graphite and coronene films deposited on it. To this end, density functional theory calculations were performed and experiments were made using the FORMOLISM device, which combines ultra-high vacuum, cryogenics, atomic or molecular beams, and mass spectrometry techniques. We first studied the desorption kinetics of dioxygen (O2) on a coronene film and graphite at 15 K using the thermally programed desorption technique. We observed that the desorption of O2 occurs at a lower temperature on coronene than on graphite. We deduce the binding energies that are 12.5 kJ/mol on graphite and 10.6 kJ/mol on coronene films (pre-exponential factor, 6.88 × 1014 s−1). The graphite surfaces partially covered with coronene show both adsorption energies. In combination with theoretical density function theory (DFT) calculations using graphene and coronene as surfaces, we observe that the experimental results are in good agreement with the theoretical calculations. For the adsorption of the O2 molecule, two orientations are possible: parallel or perpendicular to the surface. It seems that O2 is best bound parallel to the surface and has a preference for the internal sites of the coronene.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A nanoboat molecule as a promising adsorbent for molecular trapping: Theoretical insights;Physica E: Low-dimensional Systems and Nanostructures;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3