Spall failure of additively manufactured two-layered Cu–Ni bimetallic alloys

Author:

Boddorff Andrew K.12ORCID,Jang Sungwoo1,Kennedy Gregory1,Taminger Karen2,Thadhani Naresh N.1ORCID

Affiliation:

1. School of Materials Science and Engineering, Georgia Institute of Technology 1 , Atlanta, Georgia 30332, USA

2. Advanced Materials and Processing Branch, NASA Langley Research Center 2 , Hampton, Virginia 23681, USA

Abstract

The dynamic tensile spall failure of additively manufactured (AM) two-layered bimetallic GRCop-84—Inconel® 625 alloys, with planar and slanted interfaces, is investigated using uniaxial-strain plate-impact gas-gun experiments. Multiple photon Doppler velocimetry (PDV) is used to monitor the back (free) surface velocity profiles and to determine the influence of the interface geometry on the spall failure. Micrographs of cross sections of recovered impacted samples reveal failure along the interface as well as in-material regions. Spall strengths determined from pull-back signals captured with the use of the multiple PDV probes illustrate different location-specific values for the same sample, corresponding to failure occurring in Inconel® 625, or GRCop-84, or along their interface, depending on the geometry of the interface. The results obtained from the experiments employing multiple PDV probes correlated with microstructural observations of cross sections of recovered impacted samples, provide a useful method for determining the complex spall failure response of two-layered bimetallic alloys, including the differentiation of the response of the respective alloy materials relative to that of the interface, in the same experiment.

Funder

Langley Research Center

Defense Threat Reduction Agency

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3