Compact ultrafast neutron sources via bulk acceleration of deuteron ions in an optical trap

Author:

Lei Zhiyu12ORCID,Ma Hanghang123,Zhang Xiaobo124,Yu Lin12,Zhang Yihang5ORCID,Li Yutong5ORCID,Weng Suming12ORCID,Chen Min12ORCID,Zhang Jie123ORCID,Sheng Zhengming123ORCID

Affiliation:

1. Key Laboratory for Laser Plasmas and School of Physics and Astronomy, Shanghai Jiao Tong University 1 , Shanghai 200240, China

2. Collaborative Innovation Centre of IFSA, Shanghai Jiao Tong University 2 , Shanghai 200240, China

3. Tsung-Dao Lee Institute, Shanghai Jiao Tong University 3 , Shanghai 201210, China

4. College of Physics and Electronics Engineering, Northwest Normal University 4 , Lanzhou 730070, China

5. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences 5 , Beijing 100190, China

Abstract

A scheme for a quasi-monoenergetic high-flux neutron source with femtosecond duration and highly anisotropic angular distribution is proposed. This scheme is based on bulk acceleration of deuteron ions in an optical trap or density grating formed by two counter-propagating laser pulses at an intensity of ∼1016W/cm2 in a near-critical-density plasma. The deuterons are first pre-accelerated to an energy of tens of keV in the ambipolar fields formed in the optical trap. Their energy is boosted to the MeV level by another one or two laser pulses at an intensity of ∼1020W/cm2, enabling fusion reactions to be triggered with high efficiency. In contrast to previously proposed pitcher–catcher configurations, our scheme can provide spatially periodic acceleration structures and effective collisions between deuterons inside the whole target volume. Subsequently, neutrons are generated directly inside the optical trap. Our simulations show that neutron pulses with energy 2–8 MeV, yield 1018–1019n/s, and total number 106–107 in a duration ∼400 fs can be obtained with a 25 μm target. Moreover, the neutron pulses exhibit unique angularly dependent energy spectra and flux distributions, predominantly along the axis of the energy-boosting lasers. Such microsize femtosecond neutron pulses may find many applications, such as high-resolution fast neutron imaging and nuclear physics research.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3