Life cycle assessment of an agrivoltaic system with conventional potato production

Author:

Busch Christin1ORCID,Wydra Kerstin1

Affiliation:

1. Faculty of Landscape Architecture, Horticulture and Forestry, University of Applied Sciences , Erfurt, Germany

Abstract

Climate change and land use conflicts represent two of the greatest challenges worldwide. One possible solution are agrivoltaic (APV) systems, in which agricultural production is combined with a photovoltaic (PV) system in the same area. However, there is insufficient information on the environmental impacts of this technology. Therefore, the goal of this study was to evaluate the environmental impacts of an agrivoltaic system with conventional potato production using life cycle assessment (LCA). For this purpose, three scenarios were developed and compared in terms of their environmental impact: An APV system with combined potato and electricity production (scenario 1), a system with spatially separated potato and photovoltaic (PV) electricity production (scenario 2), and a potato scenario in which the electricity purchase was covered by the German electricity mix (scenario 3). The APV system (scenario 1) and the system with ground-mounted PV modules (scenario 2) performed better than scenario 3. In the Land Use category, scenario 1 caused the lowest environmental impact. Comparing the PV scenarios, scenario 2 had lower impacts in 12 of the 17 impact categories due to lower steel consumption. Also, comparing scenario 1 with scenario 3, lower impacts of the APV system were observed in 13 categories. The impacts of APV systems are generally similar to those of ground mounted PV systems, and impacts of both PV systems are lower than the existing, conventional systems of separate energy and crop production. However, due to ongoing advances in system design, materials used for the mounting structures and in the development of solar modules, it can be expected that the impact of APV will be significantly reduced in the future.

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

Reference86 articles.

1. The impacts of climate change on the livelihood of arable crop farmers in Southwest, Nigeria;Leal Filho,2016

2. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency;PLoS One,2018

3. Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment;Appl. Energy,2021

4. Agriculture, climate change and sustainability: The case of EU-28;Ecol. Indic.,2019

5. Framing and context,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3