Affiliation:
1. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , Changchun 130022, China and , Hefei 230026, China
2. University of Science and Technology of China 1 , Changchun 130022, China and , Hefei 230026, China
3. College of Chemistry, Jilin University 2 , Changchun 130012, China
4. College of Chemistry and Green Catalysis Center, Zhengzhou University 3 , Zhengzhou 450001, People’s Republic of China
Abstract
Normally, defects in two-dimensional, circular, confined liquid crystals can be classified into four types based on the position of singularities formed by liquid crystal molecules, i.e., the singularities located inside the circle, at the boundary, outside the circle, and outside the circle at infinity. However, it is considered difficult for small aspect ratio liquid crystals to generate all these four types of defects. In this study, we use molecular dynamics simulation to investigate the defect formed in Gay–Berne, ellipsoidal liquid crystals, with small aspect ratios confined in a circular cavity. As expected, we only find two types of defects (inside the circle and at the boundary) in circular, confined, Gay–Berne ellipsoids under static conditions at various densities, aspect ratios, and interactions between the wall and liquid crystals. However, when introducing an external field to the system, four types of defects can be observed. With increasing the strength of the external field, the singularities in the circular, confined system change from the inside to the boundary and the outside, and the farthest position that the singularities can reach depends on the strength of the external field. We further introduce an alternating, triangular wave, external field to the system to check if we can observe the transformation of different defects within an oscillating period. We find that the position of the singularities greatly depends on the oscillating intensity and oscillating period. By changing the oscillating intensity and oscillating period of the external field, the defect types can be adjusted, and the transformation between different defects can be easily observed. This provides a feasible way to modulate liquid crystal defects and investigate the transformation between different defects.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献