On the importance of separators as sites of 3D magnetic reconnection

Author:

Parnell C. E.1ORCID

Affiliation:

1. School of Mathematics and Statistics, University of St Andrews , St Andrews, Fife, Scotland KY16 9SS, United Kingdom

Abstract

For 3D magnetic reconnection to occur there must exist a volume within which the electric field component parallel to the magnetic field is non-zero. In numerical experiments, locations of non-zero parallel electric field indicate sites of 3D magnetic reconnection. If these experiments contain all types of topological feature (null points, separatrix surfaces, spines and separators), then comparing topological features with the reconnection sites reveals that all the reconnection sites are threaded by separators with the local maxima/minima of the integrated parallel electric along fieldlines coinciding with these separators. However, not all separators thread a reconnection site. Furthermore, there are different types of separator. Cluster separators are short arising within an individual weak magnetic field region and have little parallel electric field along them so are not associated with much reconnection. Intercluster separators connect a positive null point lying in one weak-field region to a negative null point that lies in a different weak-field region. Intercluster separators often thread enhanced regions of parallel electric field and are long. Since separators form the boundary between four globally significant topologically distinct domains, they are important sites of reconnection, which can result in the global restructuring of the magnetic field. By considering kinematic bifurcation models in which separators form, it is possible to understand the formation of cluster and intercluster separators and explain their key properties.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3