Approximating large-basis coupled-cluster theory vibrational frequencies using focal-point approximations

Author:

Nelson Philip M.1ORCID,Glick Zachary L.1ORCID,Sherrill C. David1ORCID

Affiliation:

1. Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, USA

Abstract

The focal-point approximation can be used to estimate a high-accuracy, slow quantum chemistry computation by combining several lower-accuracy, faster computations. We examine the performance of focal-point methods by combining second-order Møller–Plesset perturbation theory (MP2) with coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] for the calculation of harmonic frequencies and that of fundamental frequencies using second-order vibrational perturbation theory (VPT2). In contrast to standard CCSD(T), the focal-point CCSD(T) method approaches the complete basis set (CBS) limit with only triple-ζ basis sets for the coupled-cluster portion of the computation. The predicted harmonic and fundamental frequencies were compared with the experimental values for a set of 20 molecules containing up to six atoms. The focal-point method combining CCSD(T)/aug-cc-pV(T + d)Z with CBS-extrapolated MP2 has mean absolute errors vs experiment of only 7.3 cm−1 for the fundamental frequencies, which are essentially the same as the mean absolute error for CCSD(T) extrapolated to the CBS limit using the aug-cc-pV(Q + d)Z and aug-cc-pV(5 + d)Z basis sets. However, for H2O, the focal-point procedure requires only 3% of the computation time as the extrapolated CCSD(T) result, and the cost savings will grow for larger molecules.

Funder

National Science Foundation

U.S. Department of Energy

National Nuclear Security Administration

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3