An efficient method to generate near-ideal hollow beams of different shapes for box potential of quantum gases

Author:

Ren Tongtong12ORCID,Wang Yirong12,Dai Xiaoyu12,Gao Xiaoxu12,Sun Guangren12ORCID,Zhao Xue12,Gao Kuiyi12ORCID,Zheng Zhiyue3,Zhang WeiORCID

Affiliation:

1. Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-Nano Devices, Renmin University of China 1 , Beijing 100872, China

2. Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China 2 , Beijing 100872, China

3. Beijing Academy of Quantum Information Sciences 3 , Beijing 100193, China

Abstract

Ultracold quantum gases are usually prepared in conservative traps for quantum simulation experiments. The atomic density inhomogeneity, together with the consequent position-dependent energy and time scales of cold atoms in traditional harmonic traps, makes it difficult to manipulate and detect the sample at a higher level. These problems are partially solved by optical box traps made of blue-detuned hollow beams. However, generating a high-quality hollow beam with high light efficiency for the box trap is challenging. Here, we present a scheme that combines the fixed optics, including axicons and prisms, to pre-shape a Gaussian beam into a hollow beam with a digital micromirror device (DMD) to improve the quality of the hollow beam further, providing a nearly ideal optical potential of various shapes for preparing highly homogeneous cold atoms. The highest power-law exponent of potential walls can reach a value over 100, and the light efficiency from a Gaussian to a hollow beam is also improved compared to direct optical shaping by a mask or a DMD. Combined with a one-dimensional optical lattice, a nearly ideal two-dimensional uniform quantum gas with different geometrical boundaries can be prepared for exploring quantum many-body physics to an unprecedented level.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3