Parametric investigation of azimuthal instabilities and electron transport in a radial-azimuthal E × B plasma configuration

Author:

Reza M.1ORCID,Faraji F.1ORCID,Knoll A.1ORCID

Affiliation:

1. Plasma Propulsion Laboratory, Department of Aeronautics, Imperial College London , Exhibition Road, London, SW7 2AZ, United Kingdom

Abstract

Partially magnetized low-temperature plasmas (LTP) in an E × B configuration, where the applied magnetic field is perpendicular to the self-consistent electric field, have become increasingly relevant in industrial applications. Hall thrusters, a type of electrostatic plasma propulsion, are one of the main LTP technologies whose advancement is hindered by the not-fully-understood underlying physics of operation, particularly, with respect to the plasma instabilities and the associated electron cross field transport. The development of Hall thrusters with unconventional magnetic field topologies has imposed further questions regarding the instabilities' characteristics and the electrons' dynamics in these modern cross field configurations. Accordingly, we present in this effort a detailed parametric study of the influence of three factors on the plasma processes in the radial-azimuthal coordinates of a Hall thruster, namely, the magnetic field gradient, secondary electron emission, and plasma number density. The studies are carried out using the reduced-order particle-in-cell code developed by the authors. The setup of the radial-azimuthal simulations largely follows a well-defined benchmark case from the literature in which the magnetic field is oriented along the radius, and a constant axial electric field is applied perpendicular to the simulation plane. The salient finding from our investigations is that, in the studied cases corresponding to elevated plasma densities, a long-wavelength azimuthal mode with the frequency of about 1 MHz is developed. Moreover, in the presence of strong magnetic field gradients, this mode results from an inverse energy cascade and induces a significant electron cross field transport as well as a notable heating of the ions.

Funder

H2020 LEIT Space

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3