HZO-based FerroNEMS MAC for in-memory computing

Author:

Jadhav Shubham1ORCID,Gund Ved1ORCID,Davaji Benyamin12ORCID,Jena Debdeep13ORCID,Xing Huili (Grace)13ORCID,Lal Amit1ORCID

Affiliation:

1. School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA

2. Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, USA

3. Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA

Abstract

This paper demonstrates a hafnium zirconium oxide (HZO)-based ferroelectric NEMS unimorph as the fundamental building block for very low-energy capacitive readout in-memory computing. The reported device consists of a [Formula: see text]2 unimorph cantilever with 20-nm-thick ferroelectric HZO on 1  μm SiO2. Partial ferroelectric switching in HZO achieves analog programmable control of the piezoelectric coefficient (d31), which serves as the computational weight for multiply accumulate (MAC) operations. The displacement of the piezoelectric unimorph was recorded by actuating the device with different input voltages Vin. The resulting displacement was measured as a function of the ferroelectric programming/poling voltage [Formula: see text]. The slopes of central beam displacement (δmax) vs Vin were measured to be between 182.9 nm/V (for −8 Vp) and −90.5 nm/V (for 8 Vp), which corresponds to displacement proportionality constant β of 68 nm/V2 for +ve Vp and 47 nm/V2 for −ve Vp, demonstrating linear behavior of the multiplier unit. The resultant δmax from AC actuation is in the range of −18 to 36 nm and is a scaled product of Vin and programmed d31 (governed by the Vp). The multiplication function serves as the fundamental unit for MAC operations with the ferroelectric NEMS unimorph. The displacement from many such beams can be added by summing the capacitance changes, providing a pathway to implement a multi-input and multi-weight neuron. A scaling and fabrication analysis suggests that this device can be CMOS compatible, achieving high in-memory computational throughput.

Funder

Defense Advanced Research Projects Agency

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3