Abstract
The multistage internal airlift loop reactor (MIALR) has shown promising application prospects in gas–liquid–solid reaction systems. However, traditional MIALRs have a global circulation with strong interstage liquid-phase exchange. This paper proposes a staggered multistage internal airlift loop reactor (SMIALR) that incorporates special guide elements to create a staggered flow. Both experiments and computational fluid dynamics-population balance model simulations were conducted to investigate the hydrodynamic performances of MIALR and SMIALR. The results demonstrate that SMIALR exhibits a local circulation at each stage. Bubbles have a longer residence time in SMIALR, resulting in a 28.35%–55.54% increase in gas holdup and a 7.27%–13.69% increase in volumetric mass transfer coefficient. The gas–liquid mass transfer coefficient of SMIALR was improved by increasing the gas–liquid interfacial area. Additionally, the radial distribution of solids was found to be more uniform. This study offers insights for optimizing MIALR and provides a theoretical foundation for the design and scale-up of SMIALR.
Funder
Major Science and Technology Innovation Project of Shandong Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献