An atomistically informed multiscale approach to the intrusion and extrusion of water in hydrophobic nanopores

Author:

Paulo Gonçalo1ORCID,Gubbiotti Alberto1ORCID,Giacomello Alberto1ORCID

Affiliation:

1. Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma , Rome, Italy

Abstract

Understanding intrusion and extrusion in nanoporous materials is a challenging multiscale problem of utmost importance for applications ranging from energy storage and dissipation to water desalination and hydrophobic gating in ion channels. Including atomistic details in simulations is required to predict the overall behavior of such systems because the statics and dynamics of these processes depend sensitively on microscopic features of the pore, such as the surface hydrophobicity, geometry, and charge distribution, and on the composition of the liquid. On the other hand, the transitions between the filled (intruded) and empty (extruded) states are rare events that often require long simulation times, which are difficult to achieve with standard atomistic simulations. In this work, we explored the intrusion and extrusion processes using a multiscale approach in which the atomistic details of the system, extracted from molecular dynamics simulations, informed a simple Langevin model of water intrusion/extrusion in the pore. We then used the Langevin simulations to compute the transition times at different pressures, validating our coarse-grained model by comparing it with nonequilibrium molecular dynamics simulations. The proposed approach reproduces experimentally relevant features such as the time and temperature dependence of the intrusion/extrusion cycles, as well as specific details about the shape of the cycle. This approach also drastically increases the timescales that can be simulated, reducing the gap between simulations and experiments and showing promise for more complex systems.

Funder

H2020 European Research Council

Partnership for Advanced Computing in Europe AISBL

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Reference51 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3