Optimizing anti-perturbation capability in single-shot wide-field multimode fiber imaging systems

Author:

Feng Zefeng12ORCID,Yue Zengqi2ORCID,Zhou Wei1,Xu Baoteng1,Liu Jialin13ORCID,Hong Yanhua4ORCID,Xiong Daxi12,Yang Xibin12ORCID

Affiliation:

1. School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China 1 , Hefei 230026, China

2. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences 2 , Suzhou, Jiangsu 215163, China

3. Jinan Guoke Medical Technology Development Co 3 ., Ltd, Jinan 250101, China

4. School of Computer Science and Electronic Engineering, Bangor University 4 , Bangor LL571UT, United Kingdom

Abstract

In recent years, multimode fiber (MMF) has emerged as a focal point in ultrathin endoscopy owing to its high-capacity information transmission. Nevertheless, the technology's susceptibility to external perturbances limits its practical applications. In this study, we employ a single MMF as both the illumination unit and imaging probe and utilize this single-shot wide-field MMF imaging system to investigate the impact of LED and laser sources on anti-perturbation capabilities. Experimental results demonstrate that, in the absence of deformations in the MMF, both LED and laser-based systems achieve an average structural similarity (SSIM) index of around 0.8 for the reconstructed image, utilizing advanced deep learning techniques, with the laser-based system performing slightly better. However, under unknown MMF configurations post-deformation, the SSIM remains robust at 0.67 for the LED-based system, while the laser-based system drops the average SSIM to 0.45. The results reveal that LED has anti-perturbation capability in single-shot wide-field MMF imaging systems. These findings indicate significant potential for future anti-perturbation studies in endoscopy employing MMF imaging.

Funder

National Key Research and Development Program of China

Basic research program of suzhou

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Youth Innovation Promotion Association of ACS

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3