Affiliation:
1. Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) 1 , Takamatsu, Kagawa 761-0395, Japan
2. School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST) 2 , Nomi, Ishikawa 923-1292, Japan
Abstract
The relationship between the electromagnetic (EM) enhancement of the optical responses of molecules and plasmon resonance has been investigated using Rayleigh scattering or the extinction spectra of plasmonic systems coupled with molecular excitons. However, quantum optics predicts that the EM enhancement of such optical responses, e.g., fluorescence, Raman, and their nonlinear counterparts, is related directly to optical absorption and indirectly to Rayleigh scattering and extinction. To demonstrate this prediction, a micro-spectroscopic method for obtaining Rayleigh scattering, extinction, absorption, and EM enhancement is developed using single-coupled plasmonic systems composed of silver nanoparticle dimers and dye molecules. The EM enhancement is derived from ultrafast surface-enhanced fluorescence. An evaluation of the spectral relationships demonstrates that the EM enhancement can be reproduced better by absorption than by Rayleigh scattering or extinction. This reproduction is phenomenologically confirmed by numerical calculations based on classical electromagnetism, indicating the importance of absorption spectroscopy in coupled plasmonic systems for evaluating EM enhancement.
Funder
Japan Society for the Promotion of Science
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献