The “energy gap law” for mid-infrared nanocrystals

Author:

Kamath Ananth1ORCID,Guyot-Sionnest Philippe1ORCID

Affiliation:

1. James Franck Institute, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, USA

Abstract

Colloidal quantum dots are of increasing interest for mid-infrared detection and emission, but device performances will vastly benefit from reducing the non-radiative recombination. Empirically, the photoluminescence quantum yield decreases exponentially toward the mid-infrared, which appears similar to the energy gap law known for molecular fluorescence in the near-infrared. For molecules, the mechanism is electron–vibration coupling and fast internal vibrational relaxation. Here, we explore the possible mechanisms for inorganic quantum dots. The primary mechanism is assigned to an electric dipole near-field energy transfer from the quantum dot electronic transitions to the infrared absorption of surface organic ligands and then to the multiphonon absorption of the quantum dot inorganic core or the surrounding inorganic matrix. In order to obtain luminescent quantum dots in the 3–10 μm range, we motivate the importance of using inorganic matrices, which have a higher infrared transparency compared to organic materials. At longer wavelengths, inter-quantum dot energy transfer is noted to be much faster than radiative relaxation, indicating that bright mid-infrared colloidal quantum dot films might then benefit from dilution.

Funder

Office of Science

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3