Two-color polarization spectroscopy measurements of Zeeman state-to-state collision induced transitions of nitric oxide in binary gas mixtures

Author:

Chang Ziqiao1ORCID,Satija Aman1ORCID,Lucht Robert P.1ORCID

Affiliation:

1. School of Mechanical Engineering, Purdue University , West Lafayette, Indiana 47907, USA

Abstract

We investigated collision induced transitions in the (0, 0) band of the A2Σ+–X2Π electronic transition of nitric oxide (NO) using two-color polarization spectroscopy (TCPS). Two sets of TCPS spectra for 1% NO, diluted in different buffer gases at 295 K and 1 atm, were obtained with the pump beam tuned to the R11(11.5) and OP12(1.5) transitions. The buffer gases were He, Ar, and N2. The probe was scanned while the pump beam was tuned to the line center. Theoretical TCPS spectra, calculated by solving the density matrix formulation of the time-dependent Schrödinger wave equation, were compared with the experimental spectra. A collision model based on the modified exponential-gap law was used to model the rotational level-to-rotational level collision dynamics. A model for collisional transfer from an initial to a final Zeeman state was developed based on the difference in cosine of the rotational quantum number J projection angle with the z-axis for the two Zeeman states. Rotational energy transfer rates and Zeeman state collisional dynamics were varied to obtain good agreement between theory and experiment for the two different TCPS pump transitions and for the three different buffer gases. One key finding, in agreement with quasi-classical trajectory calculations, is that the spin-rotation changing transition rate in the A2Σ+ level of NO is almost zero for rotational quantum numbers ≥8. It was necessary to set this rate to near zero to obtain agreement with the TCPS spectra.

Funder

Chemical Sciences, Geosciences, and Biosciences Division

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3