Molecular dynamics simulations of microscopic structural transition and macroscopic mechanical properties of magnetic gels

Author:

Wei Xuefeng123ORCID,Junot Gaspard4ORCID,Golestanian Ramin56ORCID,Zhou Xin13ORCID,Wang Yanting123ORCID,Tierno Pietro478ORCID,Meng Fanlong123ORCID

Affiliation:

1. Wenzhou Institute, University of Chinese Academy of Sciences 1 , Wenzhou, Zhejiang 325000, China

2. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences 2 , Beijing 100190, China

3. School of Physical Sciences, University of Chinese Academy of Sciences 3 , 19A Yuquan Road, Beijing 100049, China

4. Departament de Física de la Matèria Condensada, Universitat de Barcelona 4 , 08028 Barcelona, Spain

5. Max Planck Institute for Dynamics and Self-Organization (MPIDS) 5 , D-37077 Göttingen, Germany

6. Rudolf Peierls Centre for Theoretical Physics, University of Oxford 6 , Oxford OX1 3PU, United Kingdom

7. Universitat de Barcelona Institute of Complex Systems 7 , 08028 Barcelona, Spain

8. Institut de Nanociència i Nanotecnologia, Universitat de Barcelona 8 , 08028 Barcelona, Spain

Abstract

Magnetic gels with embedded micro-/nano-sized magnetic particles in cross-linked polymer networks can be actuated by external magnetic fields, with changes in their internal microscopic structures and macroscopic mechanical properties. We investigate the responses of such magnetic gels to an external magnetic field, by means of coarse-grained molecular dynamics simulations. We find that the dynamics of magnetic particles are determined by the interplay of magnetic dipole–dipole interactions, polymer elasticity, and thermal fluctuations. The corresponding microscopic structures formed by the magnetic particles, such as elongated chains, can be controlled by the external magnetic field. Furthermore, the magnetic gels can exhibit reinforced macroscopic mechanical properties, where the elastic modulus increases algebraically with the magnetic moments of the particles in the form of ∝(m−mc)2 when magnetic chains are formed. This simulation work can not only serve as a tool for studying the microscopic and the macroscopic responses of the magnetic gels, but also facilitate future fabrications and practical controls of magnetic composites with desired physical properties.

Funder

National Natural Science Foundation of China

Max Planck Society

Wenzhou Institute of Biomaterials and Engineering

Beijing National Laboratory for Condensed Matter Physics

China Postdoctoral Science Foundation

European Research Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3