Investigation of collision effects on ion dynamics in the presheath and sheath of weakly collisional and magnetized hydrogen plasmas

Author:

Lee Myeong-Geon1ORCID,Kim Nam-Kyun1,Song Jaemin1ORCID,Roh Ki-Baek1ORCID,Huh Sung-Ryul2ORCID,Kim Gon-Ho1ORCID

Affiliation:

1. Department of Energy Systems Engineering, Seoul National University 1 , Seoul 08826, South Korea

2. Korea Atomic Energy Research Institute 2 , Daejeon 56212, South Korea

Abstract

The effect of collisions on the motion of magnetized ions in sheath and presheath plasma regions was investigated through the measurement of ion incident angle of a hydrogen ion at a graphite surface. The experiment was conducted in hydrogen and deuterium plasmas where the ion mean free path is 5–10 times larger than the ion gyro radius and with varying magnetic field angle ψ from 0° to 90° normal to the target surface. The hydrogen ions actively reacted with carbon, leading to the formation of conical tips with axes directed along the incident ion flow direction. The ion incident angle was measured from the etched graphite images taken by scanning electron microscopy. The measured angles were compared to those calculated using Ahedo's fluid magnetic sheath model. In addition, we adopted the nominal Bohm criterion at the electrostatic sheath edge due to the larger ion gyro radius than the sheath. The results show that the ion incident angle was inclined to the normal direction with respect to the magnetic field angle because of the effect of ion collisions on ion motion in the presheath. The collisional effect on the ion motion is drastic for an oblique magnetic field angle ψ > 85°. This study demonstrates that the collisional property of the ions is crucial to guide the ion motion in magnetic (pre)sheath and to determine the ion incidence angle at the surface, even in collisionless and weakly magnetized plasmas.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3