Performance analysis of a novel solar radiation cascade conversion system for combined heat and power generation based on spectrum splitting and reshaping

Author:

Wu Haojin1ORCID,Shan Shiquan1ORCID,Zhou Zhijun1

Affiliation:

1. State Key Laboratory of Clean Energy Utilization, Zhejiang University , Hangzhou 310027, People's Republic of China

Abstract

In this paper, a novel cascading solar photovoltaic system with concentrating spectrum splitting and reshaping for combined heat and power generation is proposed for the first time to break through the limitations of photovoltaic efficiency. Two spectral splitters divide the solar spectrum into three parts, and each part of the spectrum is used by photovoltaics, thermophotovoltaics, and heat exchange fluids according to the photon grade. In addition, the heat exchange fluid also recovers the waste heat of concentrating photovoltaic and thermophotovoltaic cells. Therefore, the system achieves solar energy cascade utilization and has high electrical and thermal efficiency simultaneously. The effect of the fluid flow rate, solar irradiance, and cutoff wavelength of the spectral splitter on the hybrid system is discussed. The results show that under the conditions of 1000 sunlight and outlet fluid temperature of 60 °C, the solar energy conversion rate and exergy efficiency of the hybrid system are 90.17% and 39.84%, which are 63.97 percentage points and 11.62 percentage points higher than those of the single photovoltaic system, respectively.

Funder

National Postdoctoral Program for Innovative Talents

China Postdoctoral Science Foundation

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3