Optical and microstructural characterization of Er3+ doped epitaxial cerium oxide on silicon
Author:
Grant Gregory D.12ORCID, Zhang Jiefei13ORCID, Masiulionis Ignas12ORCID, Chattaraj Swarnabha1ORCID, Sautter Kathryn E.1ORCID, Sullivan Sean E.1ORCID, Chebrolu Rishi2ORCID, Liu Yuzi4ORCID, Martins Jessica B.5ORCID, Niklas Jens6ORCID, Dibos Alan M.347ORCID, Kewalramani Sumit8ORCID, Freeland John W.5ORCID, Wen Jianguo4ORCID, Poluektov Oleg G.6ORCID, Heremans F. Joseph123ORCID, Awschalom David D.123ORCID, Guha Supratik123ORCID
Affiliation:
1. Materials Science Division, Argonne National Laboratory 1 , Lemont, Illinois 60439, USA 2. Pritzker School of Molecular Engineering, University of Chicago 2 , Chicago, Illinois 60637, USA 3. Center for Molecular Engineering, Argonne National Laboratory 3 , Lemont, Illinois 60439, USA 4. Center for Nanoscale Materials, Argonne National Laboratory 4 , Lemont, Illinois 60439, USA 5. X-ray Science Division, Argonne National Laboratory 5 , Lemont, Illinois 60439, USA 6. Chemical Sciences and Engineering Division, Argonne National Laboratory 6 , Lemont, Illinois 60439, USA 7. Nanoscience and Technology Division, Argonne National Laboratory 7 , Lemont, Illinois 60439, USA 8. Department of Materials Science and Engineering, Northwestern University 8 , Evanston, Illinois 60208, USA
Abstract
Rare-earth ion dopants in solid-state hosts are ideal candidates for quantum communication technologies, such as quantum memories, due to the intrinsic spin–photon interface of the rare-earth ion combined with the integration methods available in the solid state. Erbium-doped cerium oxide (Er:CeO2) is a particularly promising host material platform for such a quantum memory, as it combines the telecom-wavelength (∼1.5μm) 4f–4f transition of erbium, a predicted long electron spin coherence time when embedded in CeO2, and a small lattice mismatch with silicon. In this work, we report on the epitaxial growth of Er:CeO2 thin films on silicon using molecular beam epitaxy, with controlled erbium concentration between 2 and 130 parts per million (ppm). We carry out a detailed microstructural study to verify the CeO2 host structure and characterize the spin and optical properties of the embedded Er3+ ions as a function of doping density. In as-grown Er:CeO2 in the 2–3 ppm regime, we identify an EPR linewidth of 245(1) MHz, an optical inhomogeneous linewidth of 9.5(2) GHz, an optical excited state lifetime of 3.5(1) ms, and a spectral diffusion-limited homogeneous linewidth as narrow as 4.8(3) MHz. We test the annealing of Er:CeO2 films up to 900 °C, which yields narrowing of the inhomogeneous linewidth by 20% and extension of the excited state lifetime by 40%.
Funder
U.S. Department of Energy National Science Foundation
Reference60 articles.
1. D. D.
Awschalom
, H.Bernien, R.Brown, A.Clerk, E.Chitambar, A.Dibos, J.Dionne, M.Eriksson, B.Fefferman, G. D.Fuchs, J.Gambetta, E.Goldschmidt, S.Guha, F. J.Heremans, K. D.Irwin, A. B.Jayich, L.Jiang, J.Karsch, M.Kasevich, S.Kolkowitz, P. G.Kwiat, T.Ladd, J.Lowell, D.Maslov, N.Mason, A. Y.Matsuura, R.McDermott, R.van Meter, A.Miller, J.Orcutt, M.Saffman, M.Schleier-Smith, M. K.Singh, P.Smith, M.Suchara, F.Toudeh-Fallah, M.Turlington, B.Woods, and T.Zhong, “A roadmap for quantum interconnects,” Technical Report [Argonne National Laboratory (ANL), Argonne, IL, 2022]. 2. Development of quantum interconnects (QuICs) for next-generation information technologies;PRX Quantum,2021 3. A.
Kinos
, D.Hunger, R.Kolesov, K.Mølmer, H.de Ridmatten, P.Goldner, A.Tallaire, L.Morvan, P.Berger, S.Welinski, K.Karrai, L.Rippe, S.Kröll, and A.Walther, “Roadmap for rare-earth quantum computing,” arXiv:2103.15743 (2021), pp. 1–47. 4. Quantum guidelines for solid-state spin defects;Nat. Rev. Mater.,2021
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|