The effects of nose bluntness on broadband disturbance receptivity in hypersonic flow

Author:

He Simon1ORCID,Zhong Xiaolin1

Affiliation:

1. Mechanical and Aerospace Engineering Department, University of California , Los Angeles, California 90095, USA

Abstract

While nose bluntness is known to have a large impact on the stability of hypersonic vehicles, its influence on the freestream receptivity process has not been fully characterized for a wide range of conditions. This paper investigates the effects of nose bluntness on the second mode receptivity coefficients and the development of boundary layer disturbances over two 7° half-angle circular blunt cones at Mach 10 after perturbation with broadband freestream pulses of different types. The cones have nose radii of 9.525 mm (case B) and 5.08 mm (case I). Unsteady direct numerical simulation (DNS) and linear stability theory (LST) results compare well and predict stronger second mode growth for case I in all pulse cases. Unsteady DNS also shows variations in extramodal excitation between the cones depending on freestream disturbance type. Spectral receptivity coefficients are generated by decomposing the unsteady DNS data into discrete frequency Fourier modes, which are then corrected with LST N-factors. Fast acoustic disturbances demonstrate minimal variation in receptivity coefficients, while temperature and vorticity disturbances have much higher coefficients in case I. Planar slow acoustic pulses induce stronger disturbances outside of the second mode in case I, resulting in higher peak receptivity coefficients. Results show significant variation in receptivity response based on nose bluntness, pulse geometry, and the type of incident perturbation.

Funder

Air Force Office of Scientific Research

Office of Naval Research

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference66 articles.

1. Transition and stability of high-speed boundary layers;Annu. Rev. Fluid Mech.,2011

2. Hypersonic stability and transition,1991

3. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers;Annu. Rev. Fluid Mech.,2012

4. Receptivity of a supersonic boundary layer over a flat plate. Part 3. Effects of different types of free-stream disturbances;J. Fluid Mech.,2005

5. Application of transient growth theory to bypass transition;Meier,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3