Coupling molecular density functional theory with converged selected configuration interaction methods to study excited states in aqueous solution

Author:

Labat Maxime1,Giner Emmanuel2,Jeanmairet Guillaume13ORCID

Affiliation:

1. Sorbonne Université, CNRS, Physico-Chimie des électrolytes et Nanosystèmes Interfaciaux, PHENIX 1 , F-75005 Paris, France

2. Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, Sorbonne Université 2 , F-75005 Paris, France

3. Réseau sur le Stockage électrochimique de l’énergie (RS2E) 3 , FR CNRS 3459, 80039 Amiens Cedex, France

Abstract

This paper presents the first implementation of a coupling between advanced wavefunction theories and molecular density functional theory (MDFT). This method enables the modeling of solvent effect into quantum mechanical (QM) calculations by incorporating an electrostatic potential generated by solvent charges into the electronic Hamiltonian. Solvent charges are deduced from the spatially and angularly dependent solvent particle density. Such a density is obtained through the minimization of the functional associated with the molecular mechanics (MM) Hamiltonian describing the interaction between the fluid particles. The introduced QM/MDFT framework belongs to QM/MM family of methods, but its originality lies in the use of MDFT as the MM solver, offering two main advantages. First, its functional formulation makes it competitive with respect to sampling-based molecular mechanics. Second, it preserves a molecular-level description lost in macroscopic continuum approaches. The excited state properties of water and formaldehyde molecules solvated into water have been computed at the selected configuration interaction (SCI) level. The excitation energies and dipole moments have been compared with experimental data and previous theoretical work. A key finding is that using the Hartree–Fock method to describe the solute allows for predicting the solvent charge around the ground state with sufficient precision for the subsequent SCI calculations of excited states. This significantly reduces the computational cost of the described procedure, paving the way for the study of more complex molecules.

Funder

Institut des matériaux de Sorbonne Université

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3