Self-alignment of microstructures based on lateral fluidic force generated by local spatial asymmetry inside a microfluidic channel

Author:

Yue Tao123ORCID,Gu Shenyu1,Liu Na1,Liu Yuanyuan1ORCID,Yu Yancong1,Zhang Xinye1,Lan Weixia1ORCID,Fukuda Toshio456,Li Long123,Zhang Quan12

Affiliation:

1. School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China

2. Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200444, China

3. Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China

4. School of Mechatronic Engineering, Beijing Institute of Technology; Key Laboratory of Biomimetic Robots and Systems, Ministry of Education of China, Beijing, China

5. Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya, Japan

6. Faculty of Science and Engineering, Meijo University, Nagoya, Japan

Abstract

Three-dimensional (3D) microstructures have various applications in many fields due to their unique physical properties. Manufacturing 3D microstructures with precise micron-scale features is difficult. Although the assembly of two-dimensional (2D) structures is a smart way to construct complex 3D microstructures, the way to assemble those 2D structures precisely is still immature. One key issue is that alignment errors often occur during the assembly process, affecting the architecture accuracy of the assembled 3D structures. In this paper, we propose a method to eliminate the alignment error during the self-assembly process only by lateral fluid force. Theoretical analysis has been conducted to demonstrate how alignment errors in the assembly channel are automatically corrected, during which a force perpendicular to the flow direction is generated by the channel’s local spatial asymmetry to automatically correct those alignment errors. Besides, the movement of microstructures in the channel has been numerically simulated, whose results were consistent with the theoretical analysis, and there was indeed a lateral force that causes the self-aligning of the microstructure in the channel. The effect of the microstructure’s dimensions and the channel’s size for self-alignment procedure has also been analyzed. It shows that the self-alignment of the microstructure can complete when the ratio of the diameter of microstructures to the width of the channel is greater than 85%. Besides, experiments of the self-alignment between adjacent layers of microstructures were successful, which show the presented idea using lateral fluid force is a promising way to build 3D structures with less assembly errors.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shanghai Science and Technology Committee Rising-Star Program

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3