Variational principle of a shock stationed in a duct

Author:

Luo Tianyi1ORCID,Shan Peng1ORCID

Affiliation:

1. School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, People's Republic of China

Abstract

This paper establishes a variational principle of a normal shock stationed in ducts of the various quasi-one-dimensional (quasi-1D) steady non-conservative flow systems. It is found that the locational stability of a shock inside these ducts, namely, the stationary property of the shock, can be judged by analyzing the second-order variation of the potential energy functional of flow impulse with respect to the locational function of the shock. It proves that, for a control volume containing a shock inside a duct, the real stationary location of the shock among all the possible locations satisfying the determined inlet and outlet boundary conditions of the duct is equivalent to that the potential energy of the cross-sectional flow impulse integrated through the entire duct is a minimal. First, the shock location in general duct flows is analyzed by a momentum relaxation method. Then, based on this method, this paper's variational principle is established referring to the principle of minimum potential energy and the principle of virtual displacement. Further, this principle is applied to the flows through a quasi-1D variable-area duct, a one-dimensional (1D) frictional constant-area duct, a 1D heat-exchange constant-area duct, and a 1D mass-additional constant-area duct, which verified the generality of the principle. At last, relevant examples are provided. This variational principle affords a unified and concise theoretical criterion to analyze the stationary property of a normal shock.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3