Magnetic heating enhancement for oxygen evolution reaction on confined CoSe2 nanoparticles by alternating magnetic field

Author:

Ding Yan1,Zhou Wenda1,Luo Xingfang1ORCID,Huang Jinli1,Peng Dongquan1,Chen Mingyue1,Zhou Hang1,Hu Ce12,Yuan Cailei1ORCID

Affiliation:

1. Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China

2. Analytical & Testing Center, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China

Abstract

Localized magnetic heating in magnetic nanoparticles caused by an alternating magnetic field (AMF) can facilitate electrocatalytic reactions, which has become an emerging strategy to further enhance overall efficiency of catalysts and frontier in an electrocatalysis field. However, the investigation of AMF-assisted electrocatalysis is still in its infancy, and how to efficiently utilize magnetic heating in magnetic nanoparticles to boost electrocatalysis reactions is in great demand. In this work, a feasible design is proposed by using Néel relaxation, efficient local heating generated in superparamagnetic CoSe2 nanoparticles confined in an amorphous carbon matrix by AMF leading to improved catalytic performance. The rapid oxygen evolution reaction enhancement of CoSe2 nanoparticles responses to switched on/off AMF, indicating that the localized magnetic heating is generated in catalysts by Néel relaxation with magnetic moments of nanoparticles rapidly flipping under AMF. Our work inspires insight to design AMF-assisted electrocatalysts and inject power into the field of electrocatalysis.

Funder

National Natural Science Foundation of China

Project of Academic and Technological Leaders in Jiangxi Province

Natural Science Foundation of Jiangxi Province

Research Projects of Education Department of Jiangxi Province

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3