Architected frames for elastic wave attenuation: Experimental validation and local tuning via affine transformation

Author:

Aguzzi Giulia1ORCID,Thomsen Henrik R.1,Hejazi Nooghabi Aida1,Wiltshaw Richard2,Craster Richard V.234ORCID,Chatzi Eleni N.1,Colombi Andrea1

Affiliation:

1. Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland

2. Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

3. Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom

4. Abraham de Moivre-CNRS IRL, Imperial College London, London SW7 2AZ, United Kingdom

Abstract

We experimentally demonstrate the capability of architected plates, with a frame-like cellular structure, to inhibit the propagation of elastic flexural waves. By leveraging the octet topology as a unit cell to design the tested prototypes, a broad and easy-to-tune bandgap is experimentally generated. The experimental outcomes are supported by extensive numerical analyses based on 3D solid elements. Drawing from the underlying dynamic properties of the octet cell, we numerically propose a tailorable design with enhanced filtering capabilities. We transform the geometry of the original unit cell by applying a uniaxial scaling factor that, by breaking the in-plane symmetry of the structure, yields independently tuned struts and consequently multiple tunable bandgaps within the same cell. Our findings expand the spectrum of available numerical analyses on the octet lattice, taking it a significant step closer to its physical implementation. The ability of the octet lattice to control the propagation of flexural vibrations is significant within various applications in the mechanical and civil engineering domains, and we note such frame-like designs could lead to advancements in energy harvesting and vibration protection devices (e.g., lightweight and resonance-tunable absorbers).

Funder

Swiss National Science Foundation - Ambizione Fellowship

H2020 FETOpen project BOHEME

H2020 FET-proactive project MetaVEH

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3