Liquid entrainment in annular gas–liquid two-phase flow: A critical assessment of experimental data and prediction methods

Author:

Cioncolini Andrea1ORCID

Affiliation:

1. Department of Mechanical Engineering (Robotics), Guangdong Technion–Israel Institute of Technology (GTIIT) , 241 Daxue Road, Shantou, Guangdong 515063, China

Abstract

Annular flow is one of the most frequently observed flow patterns with gas–liquid two-phase flows in tubes or channels. In the annular flow pattern, a thin liquid film flows along the channel wall, while the gas flows in the center of the channel carrying liquid droplets in suspension. The fraction of the liquid flow rate that is transported as suspended droplets is quantified using the entrained liquid fraction (ELF), which is a key flow parameter in the analysis and modeling of annular flows. This review provides a critical assessment of ELF experimental data available in the open literature and of ELF prediction methods proposed to date. The experimental data assessment is carried out by means of a large ELF data bank collected from the literature (4175 data points from 53 literature studies; 10 fluids combinations; operating pressures from atmospheric to 20 MPa; experiments carried out with adiabatic, evaporating, and condensing flows through circular tubes, and non-circular channels with diameters from 3.02 to 155.7 mm), which is critically analyzed devoting special attention to important aspects not adequately addressed in previous studies, such as a cross-comparison between different ELF measuring techniques, and the analysis of flow development and gravity effects. The assessment of the ELF prediction methods focuses on 15 widely quoted methods, which are critically analyzed and whose prediction performance is evaluated against the measured data. The curated ELF experimental data bank is provided in full and usable form. Research gaps for further investigations are identified and discussed.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference110 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3