Linking wall shear stress and vorticity topologies: Toward a unified theory of cardiovascular flow disturbances

Author:

Mazzi Valentina1ORCID,Gallo Diego1ORCID,Calò Karol1ORCID,Steinman David A.2ORCID,Morbiducci Umberto1ORCID

Affiliation:

1. PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino 1 , Turin, Italy

2. Biomedical Simulation Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto 2 , Toronto, Ontario M5S 3G8, Canada

Abstract

Broadening current knowledge about the complex relationship at the blood-vessel wall interface is a main challenge in hemodynamics research. Moving from the consideration that wall shear stress (WSS) provides a signature for the near-wall velocity dynamics and vorticity is considered the skeleton of fluid motion, here we present a unified theory demonstrating the existing link between surface vorticity (SV) and WSS topological skeletons, the latter recently emerged as a predictor of vascular disease. The analysis focused on WSS and SV fixed points, i.e., points where the fields vanish, as they play a major role in shaping the main vector field features. The theoretical analysis proves that: (i) all SV fixed points on the surface must necessarily be WSS fixed points, although with differences in nature and stability and (ii) a WSS fixed point is not necessarily a SV fixed point. In the former case, WSS fixed points are the consequence of flow patterns where only shear contributes to vorticity; in the latter case, WSS fixed points are the consequence of flow impingement to/emanation from the vessel wall. Moreover, fluid structures interacting with the wall characterized by zero or non-zero rotational momentum generate WSS fixed points of different nature/stability. High-fidelity computational fluid dynamics simulations in intracranial aneurysm models confirmed the applicability of the theoretical considerations. The presented unified theory unambiguously explains the mechanistic link between near-wall flow disturbances and the underlying intravascular flow features expressed in terms of vorticity, ultimately facilitating a clearer interpretation of the role of local hemodynamics in vascular pathophysiology.

Funder

Ministero dell'Università e della Ricerca

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3