1. Latent Correlation Representation Learning for Brain Tumor Segmentation With Missing MRI Modalities
2. Azad, R., Khosravi, N., & Merhof, D. (2022). SMU-Net: Style matching U-Net for brain tumor segmentation with missing modalities. arXiv preprint arXiv:2204.02961.
3. Vadacchino, S., Mehta, R., Sepahvand, N. M., Nichyporuk, B., Clark, J. J., & Arbel, T. (2021, August). Had-net: A hierarchical adversarial knowledge distillation network for improved enhanced tumor segmentation without post-contrast images. In Medical Imaging with Deep Learning (pp. 787–801). PMLR
4. Ding, Y., Yu, X., & Yang, Y. (2021). RFNet: Region-aware fusion network for incomplete multi-modal brain tumor segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 3975–3984).
5. Zhu, Y., Wang, S., Hu, Y., Ma, X., Qin, Y., & Xie, J. (2021, December). DRM-VAE: A Dual Residual Multi Variational Auto-Encoder for Brain Tumor Segmentation with Missing Modalities. In 2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE) (pp. 82–86). IEEE.