Comparison and evaluation of dimensionality reduction techniques for the numerical simulations of unsteady cavitation

Author:

Zhang GuiyongORCID,Wang ZihaoORCID,Huang Huakun,Li Hang,Sun TiezhiORCID

Abstract

In the field of fluid mechanics, dimensionality reduction (DR) is widely used for feature extraction and information simplification of high-dimensional spatiotemporal data. It is well known that nonlinear DR techniques outperform linear methods, and this conclusion may have reached a consensus in the field of fluid mechanics. However, this conclusion is derived from an incomplete evaluation of the DR techniques. In this paper, we propose a more comprehensive evaluation system for DR methods and compare and evaluate the performance differences of three DR methods: principal component analysis (PCA), isometric mapping (isomap), and independent component analysis (ICA), when applied to cavitation flow fields. The numerical results of the cavitation flow are obtained by solving the compressible homogeneous mixture model. First, three different error metrics are used to comprehensively evaluate reconstruction errors. Isomap significantly improves the preservation of nonlinear information and retains the most information with the fewest modes. Second, Pearson correlation can be used to measure the overall structural characteristics of the data, while dynamic time warping cannot. PCA performs the best in preserving the overall data characteristics. In addition, based on the uniform sampling-based K-means clustering proposed in this paper, it becomes possible to evaluate the local structural characteristics of the data using clustering similarity. PCA still demonstrates better capability in preserving local data structures. Finally, flow patterns are used to evaluate the recognition performance of flow features. PCA focuses more on identifying the major information in the flow field, while isomap emphasizes identifying more nonlinear information. ICA can mathematically obtain more meaningful independent patterns. In conclusion, each DR algorithm has its own strengths and limitations. Improving evaluation methods to help select the most suitable DR algorithm is more meaningful.

Funder

National Nature Science Foundation of China

Fundamental Research Funds for the Central Universities

Dalian Innovation Research Team in Key Areas

Dalian High-level Talent Innovation Support Progar

Computation support of the Supercomputing Center of Dalian University of Technology

Liao Ning Revitalization Talents Program

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference51 articles.

1. Challenges for large eddy simulation of engineering flows,2017

2. Machine learning for fluid mechanics;Annu. Rev. Fluid Mech.,2020

3. A divide-and-conquer machine learning approach for modeling turbulent flows;Phys. Fluids,2023

4. Cost efficient CFD simulations: Proper selection of domain partitioning strategies;Comput. Phys. Commun.,2017

5. Deep learning approaches in flow visualization;Adv. Aerodyn.,2022

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3