Affiliation:
1. Complex Systems Group, Department of Mathematics and Statistics, The University of Western Australia , Crawley, Western Australia 6009, Australia
Abstract
We propose a robust algorithm for constructing first return maps of dynamical systems from time series without the need for embedding. A first return map is typically constructed using a convenient heuristic (maxima or zero-crossings of the time series, for example) or a computationally nuanced geometric approach (explicitly constructing a Poincaré section from a hyper-surface normal to the flow and then interpolating to determine intersections with trajectories). Our method is based on ordinal partitions of the time series, and the first return map is constructed from successive intersections with specific ordinal sequences. We can obtain distinct first return maps for each ordinal sequence in general. We define entropy-based measures to guide our selection of the ordinal sequence for a “good” first return map and show that this method can robustly be applied to time series from classical chaotic systems to extract the underlying first return map dynamics. The results are shown for several well-known dynamical systems (Lorenz, Rössler, and Mackey–Glass in chaotic regimes).
Funder
Australian Research Council
Forrest Research Foundation
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献