On solute dispersion in an oscillatory magneto-hydrodynamics porous medium flow under the effect of heterogeneous and bulk chemical reaction

Author:

Poddar Nanda1ORCID,Saha Gourab1ORCID,Dhar Subham1ORCID,Mondal Kajal Kumar1ORCID

Affiliation:

1. Department of Mathematics, Cooch Behar Panchanan Barma University, Cooch Behar 736101, India

Abstract

It is well known to all of us that there is a shortage of pure drinking water across the globe. Different types of pollutants (metallic and nonmetallic) mix with the water, and they cause several diseases such as cholera, typhoid, and various kinds of skin diseases, and even it is found that these kinds of particles may cause skin cancer. In the current study, an analytical solution of a two-dimensional convection–diffusion equation is obtained using Mei's multi-scale homogenization technique to investigate the influences of homogeneous and heterogeneous reactions on dispersion phenomena of the solute in an oscillatory magneto-hydrodynamics porous medium flow. In the appearance of the applied transverse magnetic field and oscillatory pressure gradient, a mathematical model of magneto-hydrodynamics dispersion between two parallel plates is presented. The analytical expressions of Taylor dispersivity, longitudinal mean and real concentration distributions, transverse concentration distribution, and transverse uniformity rate of the concentration are obtained. Also, the effect of various flow parameters such as Péclet number, Hartmann number, Schmidt number, Darcy number, oscillatory Reynolds number, porous parameter, dispersion time, downstream and upstream locations, chemical heterogeneous boundary reaction, and bulk reaction is discussed. How the transport phenomena of the solute display different natures with the various ranges of Darcy and Hartmann numbers with the aid of homogeneous and heterogeneous boundary reactions are highlighted. To show the effect of the absorption parameters on the transport coefficient, the third-order approximation of concentration is performed. It is seen that the dispersion coefficient ([Formula: see text]) corresponding to the purely time-dependent flow increases with the enhancement of the Darcy number ( Da). Moreover, it is found that as the Hartmann number ( M) enhances, the total dispersivity ( DT) decreases. Also, the transverse concentration distribution becomes flat for larger values of the Hartmann number. It is noticed that when [Formula: see text], the transverse variation curve turns into a trimodal distribution from a bimodal. This model may be helpful for separating various metallic and nonmetallic particles from the water to reduce the water pollution.

Funder

University Grants Commission

Department of Science and Technology, Ministry of Science and Technology, India

Council of Scientific and Industrial Research, India

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3