A high-temperature and high-pressure cell for in situ visualization of reaction processes by neutron imaging

Author:

Abe Jun1ORCID,Matsumoto Yoshihiro1ORCID,Miyazaki Tsukasa1,Noma Takashi1ORCID

Affiliation:

1. Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS) , Tokai, Ibaraki 319-1106, Japan

Abstract

This study developed a high-temperature and high-pressure (HTHP) cell for in situ neutron imaging of hydrothermal reactions. The cell’s maximum temperature and pressure were 500 °C and 50 MPa, respectively, and its vessel for observing reactions comprised SUS316 stainless steel. Neutron transmission images were obtained to observe the behavior of sub- and supercritical water and the decomposition of two plastics (polypropylene and polyethylene) at HTHP. The images showed that water’s density and phase changed with temperature and pressure, affecting neutron transmission (and thus image brightness). The plastics began to melt and change shape at 150–200 °C, and they decomposed at 500 °C and 20 MPa. This study provides a basis for future research using the HTHP cell to examine various reactions such as the decomposition of biomass samples, the reforming of heavy oil, and the synthesis of nano-materials using sub- and supercritical water.

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3