3D printing of bio-inspired porous polymeric solar steam generators for efficient and sustainable desalination

Author:

Hou Yanbei12ORCID,Gao Ming12ORCID,Bai Xueyu2,Zhao Lihua13,Du Hejun12ORCID,Zhou Kun12ORCID

Affiliation:

1. HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University 1 , Nanyang Avenue 50, Singapore 639798, Singapore

2. Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University 2 , Nanyang Avenue 50, Singapore 639798, Singapore

3. 3D Lab, HP Labs, HP Inc. 3 , Palo Alto, California 94304, USA

Abstract

Freshwater scarcity is a pressing issue worldwide, and solar steam generators (SSGs) have emerged as a promising device for seawater desalination, harnessing renewable solar energy to facilitate sustainable water evaporation. The facile fabrication approach for SSG with complex topologies to achieve high water evaporation efficiency remains a challenge. Herein, a MIL-101 (Fe)-derived C@Fe3O4 ink was employed to multi-jet fusion (MJF) printing of polymeric porous SSGs with specific topologies. The optimized porous structure endows the printed SSGs with capillary force, greatly promoting water transport. The tree-like topology enables high water evaporation rates under various simulated solar radiation conditions. A finite element model was built to fully understand the light-to-thermal energy conversion and water evaporation processes. Moreover, the MJF-printed SSGs exhibit self-cleaning properties and can automatically remove accumulated salt on their surfaces, enabling sustainable desalination. During prolonged testing, the water evaporation rate of the SSGs remained relatively stable and reached as high as 1.55 kg m−2 h−1. Additionally, the desalinated water met the standards for direct drinking water. This study presents a state-of-the-art technology for producing efficient SSGs for desalination and introduces a novel method for MJF printing of functional nanocomposites.

Funder

IAF-ICP

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3