Pressure-tuned superflat bands and electronic localization in twisted bilayer graphene-like materials

Author:

Wang Hongfei12ORCID,Lei Dangyuan2ORCID

Affiliation:

1. Department of Physics, International Center for Quantum and Molecular Structures, Shanghai University 1 , Shanghai 200444, China

2. Department of Materials Science and Engineering, City University of Hong Kong 2 , Kowloon, Hong Kong 999077, China

Abstract

Electronic properties of twisted bilayer graphene-like materials can be modified substantially by manipulating twist angles, allowing for many exotic correlated phenomena. However, typical moiré flatbands holding these phenomena only appear with specific small twist angles. Here, we report a class of pressure-tuned superflat bands and localized electronic states over a wide range of twist angles, beyond the physics of twisted bilayer graphene near the Fermi energy. Under the slowly varying lattice distortion approximation, localized electronic states deterministically emerge in isolation at the edge of bulk spectra and are spatially centered around the AA stacked region, governed by macroscopic effective potential wells of moiré superlattices. Moreover, as macroscopic effects, pressure-tuned superflat bands and localized electronic states exhibit excellent stability against small perturbations. Our results suggest that applying pressure in generic twisted bilayer graphene-like materials may evoke widespread electronic correlations, providing opportunities for exploring electronic interactions and superconductivity.

Funder

Research Grants Council, University Grants Committee

National Natural Science Foundation of China

City University of Hong Kong

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3