Scattering properties of acoustic beams off spinning objects: Induced radiation force and torque

Author:

Farhat Mohamed1ORCID,Guenneau Sebastien2ORCID,Chen Pai-Yen3ORCID,Wu Ying1ORCID

Affiliation:

1. Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

2. UMI 2004 Abraham de Moivre-CNRS, Imperial College London, London SW7 2AZ, United Kingdom

3. Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA

Abstract

Understanding the acoustic scattering and radiation force and torque of an object is important in various fields, such as underwater communication, acoustic imaging, and noninvasive characterization, as well as biomedical ultrasound. Generally, acoustic scattering is considered for static (non-moving) objects and the impinging signal is typically a plane wave. Here, we consider scattering off cylindrical objects in spinning motion around the axis of rotational symmetry. We investigate the radiation force and torque induced by various incident signals, e.g., cylindrical diverging and converging beams as well as quasi-Gaussian beams of different orders. It is assumed in this study (unless otherwise stated) that the acoustic parameters of the objects (density and compressibility) are identical to those of the surrounding medium, in order to isolate the effects purely attributed to rotation. The scenario of a spinning inhomogeneous object is also shown to play a prominent role for generating torque with single plane waves. Our findings may add to the current interest in time-varying and moving metamaterials and open vistas in manipulation of movement and position of ultra-small objects via acoustic beams.

Funder

King Abdullah University of Science and Technology

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3