Estimating the economic impacts of improved wind speed forecasts in the United States electricity sector

Author:

Jeon Hwayoung1,Hartman Brad1ORCID,Cutler Harvey1,Hill Rebecca1,Hu Yuchen1,Lu Tao1,Shields Martin1ORCID,Turner David D.2ORCID

Affiliation:

1. Colorado State University, Fort Collins, Colorado 80523, USA

2. NOAA Global Systems Laboratory, Boulder, Colorado 80305-3328, USA

Abstract

Each year the U.S. government makes significant investments in improving weather forecast models. In this paper, we use a multidisciplinary approach to examine how utilities can benefit from improved wind-speed forecasts to more efficiently use wind-generated electricity and subsequently increase economic activity. Specifically, we examine how improvements to the National Oceanic and Atmospheric Administration's high-resolution rapid refresh model (HRRR) wind forecasts can provide (1) cost savings for utilities and (2) increase in real household income. To do so, we compare 12-h-ahead wind forecasts with real-time observations for two HRRR model transitions (i.e., when one model is operational, the other is being tested). We compare estimates of actual and predicted wind power under the publicly available and developmental models, with reduced forecast errors allowing for better utility decision-making and lower production costs. We then translate potential cost savings into electricity price changes, which are entered as exogenous shocks to eight regional computable general equilibrium models constructed for the U.S. Overall, we find that households would have seen a potential $60 million increase in real income for our sample (13% of all contiguous U.S. land-based turbine capacity), which had the updated HRRR models been in place during the two transition periods; applying our estimated savings for the sample of turbines to the entire array of turbines shows a potential real household income increase in approximately $384 million during these time frames.

Funder

National Oceanic and Atmospheric Administration

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3