Affiliation:
1. Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University , Huangshi 435002, Hubei, People’s Republic of China
Abstract
CuMnO2 nanoflakes have been prepared utilizing a hydrothermal technique with nitrilotriacetic acid as a precipitant. The structure, composition, and morphology are characterized by several techniques. Interestingly, the as-prepared sample delivers 993 mAh g−1 after 300 cycles, excellent rate capabilities (523.2, 293.3, and 156.1 mAh g−1 at 0.5, 1.0, and 2.0 A g−1, respectively) as the anode of a Li-half battery, and a high specific capacitance of 403.3 F g−1 even at 12 A g−1, as well as stable cycling, excellent kinetics, and rate capabilities for supercapacitors applications, which are superior to the single Cu2O or Mn2O3, suggesting a great potential for advanced lithium-ion batteries.
Subject
General Engineering,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献