Affiliation:
1. Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
Abstract
We investigate the stationary flow of a colloidal gel under an inhomogeneous external shear force using adaptive Brownian dynamics simulations. The interparticle forces are derived from the Stillinger–Weber potential, where the three-body term is tuned to enable network formation and gelation in equilibrium. When subjected to the shear force field, the system develops remarkable modulations in the one-body density profile. Depending on the shear magnitude, particles accumulate either in quiescent regions or in the vicinity of maximum net flow, and we deduce this strong non-equilibrium response to be characteristic of the gel state. Studying the components of the internal force parallel and perpendicular to the flow direction reveals that the emerging flow and structure of the stationary state are driven by significant viscous and structural superadiabatic forces. Thereby, the magnitude and nature of the observed non-equilibrium phenomena differ from the corresponding behavior of simple fluids. We demonstrate that a simple power functional theory reproduces accurately the viscous force profile, giving a rationale of the complex dynamical behavior of the system.
Funder
Deutsche Forschungsgemeinschaft
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Neural force functional for non-equilibrium many-body colloidal systems;Machine Learning: Science and Technology;2024-09-01
2. Hyperdensity Functional Theory of Soft Matter;Physical Review Letters;2024-08-30
3. Noether invariance theory for the equilibrium force structure of soft matter;Journal of Physics A: Mathematical and Theoretical;2024-04-16
4. Why neural functionals suit statistical mechanics;Journal of Physics: Condensed Matter;2024-03-21
5. Colloidal gels;The Journal of Chemical Physics;2023-09-05