A Data Fusion System for Simulation of Critical Scenarios and Decision-Making

Author:

Florez Zuluaga Jimmy AndersonORCID,Patiño Carrasco EstebanORCID,Ortega Pabon Jose DavidORCID,Gallego Leon KellyORCID,Quintero Montoya O. LuciaORCID

Abstract

The decision-making (DM) process in critical environments is a complex process that can be simulated due to current telematic capabilities, which allow the real time interaction of large amounts of data. This document describes the proposed architecture from a research process, developed by the FAC Aerospace Technology Development Center (CETAD), where using computational and expert system tools, allowed to create a computational environment for decision maker evaluated his options to prepares for real events, simulating characteristics, resources and strategies in a real time environment. This document describes an investigation product resulted in a simulation system, based on a combination of fuzzy logic, genetic algorithms and decision trees which let modelled and simulated various entities and their automatic response according to simulated patterns and situations, in which, through operators, decision maker can modify entities behaviour, according to parameterized restrictions and physical conditions. Also based on business intelligence tools, reports are generated to evaluate the decisions made. This type of technologies improves planning capacity and facilitate the decision-making process. System allows simulating any media deployment in national security and critical events context. Thus, a case study was developed for implementation of a support in natural disaster scenario simulation

Publisher

Universidad Militar Nueva Granada

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improve decision-making process in Air Command and Control Systems with meteorological data fusion;2021 International Conference on Decision Aid Sciences and Application (DASA);2021-12-07

2. Special Issue in Artificial Intelligence;Ciencia e Ingeniería Neogranadina;2019-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3